Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Interactive dimensionality reduction using similarity projections (1811.05531v1)

Published 13 Nov 2018 in cs.CV

Abstract: Recent advances in machine learning allow us to analyze and describe the content of high-dimensional data like text, audio, images or other signals. In order to visualize that data in 2D or 3D, usually Dimensionality Reduction (DR) techniques are employed. Most of these techniques, e.g., PCA or t-SNE, produce static projections without taking into account corrections from humans or other data exploration scenarios. In this work, we propose the interactive Similarity Projection (iSP), a novel interactive DR framework based on similarity embeddings, where we form a differentiable objective based on the user interactions and perform learning using gradient descent, with an end-to-end trainable architecture. Two interaction scenarios are evaluated. First, a common methodology in multidimensional projection is to project a subset of data, arrange them in classes or clusters, and project the rest unseen dataset based on that manipulation, in a kind of semi-supervised interpolation. We report results that outperform competitive baselines in a wide range of metrics and datasets. Second, we explore the scenario of manipulating some classes, while enriching the optimization with high-dimensional neighbor information. Apart from improving classification precision and clustering on images and text documents, the new emerging structure of the projection unveils semantic manifolds. For example, on the Head Pose dataset, by just dragging the faces looking far left to the left and those looking far right to the right, all faces are re-arranged on a continuum even on the vertical axis (face up and down). This end-to-end framework can be used for fast, visual semi-supervised learning, manifold exploration, interactive domain adaptation of neural embeddings and transfer learning.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.