Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Semi-dual Regularized Optimal Transport (1811.05527v1)

Published 13 Nov 2018 in cs.LG, cs.AI, math.OC, and stat.ML

Abstract: Variational problems that involve Wasserstein distances and more generally optimal transport (OT) theory are playing an increasingly important role in data sciences. Such problems can be used to form an examplar measure out of various probability measures, as in the Wasserstein barycenter problem, or to carry out parametric inference and density fitting, where the loss is measured in terms of an optimal transport cost to the measure of observations. Despite being conceptually simple, such problems are computationally challenging because they involve minimizing over quantities (Wasserstein distances) that are themselves hard to compute. Entropic regularization has recently emerged as an efficient tool to approximate the solution of such variational Wasserstein problems. In this paper, we give a thorough duality tour of these regularization techniques. In particular, we show how important concepts from classical OT such as c-transforms and semi-discrete approaches translate into similar ideas in a regularized setting. These dual formulations lead to smooth variational problems, which can be solved using smooth, differentiable and convex optimization problems that are simpler to implement and numerically more stable that their un-regularized counterparts. We illustrate the versatility of this approach by applying it to the computation of Wasserstein barycenters and gradient flows of spatial regularization functionals.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.