Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Estimating the Impact of Cyber-Attack Strategies for Stochastic Control Systems (1811.05410v1)

Published 13 Nov 2018 in cs.SY

Abstract: Risk assessment is an inevitable step in implementation of a cyber-defense strategy. An important part of this assessment is to reason about the impact of possible attacks. In this paper, we propose a framework for estimating the impact of cyber-attacks in stochastic linear control systems. The framework can be used to estimate the impact of denial of service, rerouting, sign alternation, replay, false data injection, and bias injection attacks. For the stealthiness constraint, we adopt the Kullback-Leibler divergence between residual sequences during the attack. Two impact metrics are considered: (1) The probability that some of the critical states leave a safety region; and (2) The expected value of the infinity norm of the critical states. For the first metric, we prove that the impact estimation problem can be reduced to a set of convex optimization problems. Thus, the exact solution can be found efficiently. For the second metric, we derive an efficient to calculate lower bound. Finally, we demonstrate how the framework can be used for risk assessment on an example.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.