Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SMERC: Social media event response clustering using textual and temporal information (1811.05063v1)

Published 13 Nov 2018 in cs.SI, cs.IR, physics.data-an, and stat.AP

Abstract: Tweet clustering for event detection is a powerful modern method to automate the real-time detection of events. In this work we present a new tweet clustering approach, using a probabilistic approach to incorporate temporal information. By analysing the distribution of time gaps between tweets we show that the gaps between pairs of related tweets exhibit exponential decay, whereas the gaps between unrelated tweets are approximately uniform. Guided by this insight, we use probabilistic arguments to estimate the likelihood that a pair of tweets are related, and build an improved clustering method. Our method Social Media Event Response Clustering (SMERC) creates clusters of tweets based on their tendency to be related to a single event. We evaluate our method at three levels: through traditional event prediction from tweet clustering, by measuring the improvement in quality of clusters created, and also comparing the clustering precision and recall with other methods. By applying SMERC to tweets collected during a number of sporting events, we demonstrate that incorporating temporal information leads to state of the art clustering performance.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.