Papers
Topics
Authors
Recent
2000 character limit reached

SMERC: Social media event response clustering using textual and temporal information (1811.05063v1)

Published 13 Nov 2018 in cs.SI, cs.IR, physics.data-an, and stat.AP

Abstract: Tweet clustering for event detection is a powerful modern method to automate the real-time detection of events. In this work we present a new tweet clustering approach, using a probabilistic approach to incorporate temporal information. By analysing the distribution of time gaps between tweets we show that the gaps between pairs of related tweets exhibit exponential decay, whereas the gaps between unrelated tweets are approximately uniform. Guided by this insight, we use probabilistic arguments to estimate the likelihood that a pair of tweets are related, and build an improved clustering method. Our method Social Media Event Response Clustering (SMERC) creates clusters of tweets based on their tendency to be related to a single event. We evaluate our method at three levels: through traditional event prediction from tweet clustering, by measuring the improvement in quality of clusters created, and also comparing the clustering precision and recall with other methods. By applying SMERC to tweets collected during a number of sporting events, we demonstrate that incorporating temporal information leads to state of the art clustering performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.