Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Exploiting Local Feature Patterns for Unsupervised Domain Adaptation (1811.05042v2)

Published 12 Nov 2018 in cs.LG and stat.ML

Abstract: Unsupervised domain adaptation methods aim to alleviate performance degradation caused by domain-shift by learning domain-invariant representations. Existing deep domain adaptation methods focus on holistic feature alignment by matching source and target holistic feature distributions, without considering local features and their multi-mode statistics. We show that the learned local feature patterns are more generic and transferable and a further local feature distribution matching enables fine-grained feature alignment. In this paper, we present a method for learning domain-invariant local feature patterns and jointly aligning holistic and local feature statistics. Comparisons to the state-of-the-art unsupervised domain adaptation methods on two popular benchmark datasets demonstrate the superiority of our approach and its effectiveness on alleviating negative transfer.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.