Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Coordinating Disaster Emergency Response with Heuristic Reinforcement Learning (1811.05010v1)

Published 12 Nov 2018 in cs.LG and stat.ML

Abstract: A crucial and time-sensitive task when any disaster occurs is to rescue victims and distribute resources to the right groups and locations. This task is challenging in populated urban areas, due to the huge burst of help requests generated in a very short period. To improve the efficiency of the emergency response in the immediate aftermath of a disaster, we propose a heuristic multi-agent reinforcement learning scheduling algorithm, named as ResQ, which can effectively schedule the rapid deployment of volunteers to rescue victims in dynamic settings. The core concept is to quickly identify victims and volunteers from social network data and then schedule rescue parties with an adaptive learning algorithm. This framework performs two key functions: 1) identify trapped victims and rescue volunteers, and 2) optimize the volunteers' rescue strategy in a complex time-sensitive environment. The proposed ResQ algorithm can speed up the training processes through a heuristic function which reduces the state-action space by identifying the set of particular actions over others. Experimental results showed that the proposed heuristic multi-agent reinforcement learning based scheduling outperforms several state-of-art methods, in terms of both reward rate and response times.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube