Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

CQASUMM: Building References for Community Question Answering Summarization Corpora (1811.04884v1)

Published 12 Nov 2018 in cs.CL

Abstract: Community Question Answering forums such as Quora, Stackoverflow are rich knowledge resources, often catering to information on topics overlooked by major search engines. Answers submitted to these forums are often elaborated, contain spam, are marred by slurs and business promotions. It is difficult for a reader to go through numerous such answers to gauge community opinion. As a result summarization becomes a prioritized task for CQA forums. While a number of efforts have been made to summarize factoid CQA, little work exists in summarizing non-factoid CQA. We believe this is due to the lack of a considerably large, annotated dataset for CQA summarization. We create CQASUMM, the first huge annotated CQA summarization dataset by filtering the 4.4 million Yahoo! Answers L6 dataset. We sample threads where the best answer can double up as a reference summary and build hundred word summaries from them. We treat other answers as candidates documents for summarization. We provide a script to generate the dataset and introduce the new task of Community Question Answering Summarization. Multi document summarization has been widely studied with news article datasets, especially in the DUC and TAC challenges using news corpora. However documents in CQA have higher variance, contradicting opinion and lesser amount of overlap. We compare the popular multi document summarization techniques and evaluate their performance on our CQA corpora. We look into the state-of-the-art and understand the cases where existing multi document summarizers (MDS) fail. We find that most MDS workflows are built for the entirely factual news corpora, whereas our corpus has a fair share of opinion based instances too. We therefore introduce OpinioSumm, a new MDS which outperforms the best baseline by 4.6% w.r.t ROUGE-1 score.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.