Papers
Topics
Authors
Recent
2000 character limit reached

Matrix Product Operator Restricted Boltzmann Machines

Published 12 Nov 2018 in cs.CV | (1811.04608v1)

Abstract: A restricted Boltzmann machine (RBM) learns a probability distribution over its input samples and has numerous uses like dimensionality reduction, classification and generative modeling. Conventional RBMs accept vectorized data that dismisses potentially important structural information in the original tensor (multi-way) input. Matrix-variate and tensor-variate RBMs, named MvRBM and TvRBM, have been proposed but are all restrictive by model construction, which leads to a weak model expression power. This work presents the matrix product operator RBM (MPORBM) that utilizes a tensor network generalization of Mv/TvRBM, preserves input formats in both the visible and hidden layers, and results in higher expressive power. A novel training algorithm integrating contrastive divergence and an alternating optimization procedure is also developed. Numerical experiments compare the MPORBM with the traditional RBM and MvRBM for data classification and image completion and denoising tasks. The expressive power of the MPORBM as a function of the MPO-rank is also investigated.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.