Papers
Topics
Authors
Recent
2000 character limit reached

R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate (1811.04194v3)

Published 10 Nov 2018 in math.OC and cs.LG

Abstract: We study smooth stochastic optimization problems on Riemannian manifolds. Via adapting the recently proposed SPIDER algorithm \citep{fang2018spider} (a variance reduced stochastic method) to Riemannian manifold, we can achieve faster rate than known algorithms in both the finite sum and stochastic settings. Unlike previous works, by \emph{not} resorting to bounding iterate distances, our analysis yields curvature independent convergence rates for both the nonconvex and strongly convex cases.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.