Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Joint Acoustic and Class Inference for Weakly Supervised Sound Event Detection (1811.04048v1)

Published 9 Nov 2018 in eess.AS and cs.SD

Abstract: Sound event detection is a challenging task, especially for scenes with multiple simultaneous events. While event classification methods tend to be fairly accurate, event localization presents additional challenges, especially when large amounts of labeled data are not available. Task4 of the 2018 DCASE challenge presents an event detection task that requires accuracy in both segmentation and recognition of events while providing only weakly labeled training data. Supervised methods can produce accurate event labels but are limited in event segmentation when training data lacks event timestamps. On the other hand, unsupervised methods that model the acoustic properties of the audio can produce accurate event boundaries but are not guided by the characteristics of event classes and sound categories. We present a hybrid approach that combines an acoustic-driven event boundary detection and a supervised label inference using a deep neural network. This framework leverages benefits of both unsupervised and supervised methodologies and takes advantage of large amounts of unlabeled data, making it ideal for large-scale weakly labeled event detection. Compared to a baseline system, the proposed approach delivers a 15% absolute improvement in F-score, demonstrating the benefits of the hybrid bottom-up, top-down approach.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.