Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Complexity Dichotomy for Critical Values of the b-Chromatic Number of Graphs (1811.03966v2)

Published 9 Nov 2018 in cs.DS and cs.CC

Abstract: A $b$-coloring of a graph $G$ is a proper coloring of its vertices such that each color class contains a vertex that has at least one neighbor in all the other color classes. The b-Coloring problem asks whether a graph $G$ has a $b$-coloring with $k$ colors. The $b$-chromatic number of a graph $G$, denoted by $\chi_b(G)$, is the maximum number $k$ such that $G$ admits a $b$-coloring with $k$ colors. We consider the complexity of the b-Coloring problem, whenever the value of $k$ is close to one of two upper bounds on $\chi_b(G)$: The maximum degree $\Delta(G)$ plus one, and the $m$-degree, denoted by $m(G)$, which is defined as the maximum number $i$ such that $G$ has $i$ vertices of degree at least $i-1$. We obtain a dichotomy result stating that for fixed $k \in {\Delta(G) + 1 - p, m(G) - p}$, the problem is polynomial-time solvable whenever $p \in {0, 1}$ and, even when $k = 3$, it is NP-complete whenever $p \ge 2$. We furthermore consider parameterizations of the b-Coloring problem that involve the maximum degree $\Delta(G)$ of the input graph $G$ and give two FPT-algorithms. First, we show that deciding whether a graph $G$ has a $b$-coloring with $m(G)$ colors is FPT parameterized by $\Delta(G)$. Second, we show that b-Coloring is FPT parameterized by $\Delta(G) + \ell_k(G)$, where $\ell_k(G)$ denotes the number of vertices of degree at least $k$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.