Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Generalized-Jacobi-Function Spectral Method for Space-Time Fractional Reaction-Diffusion Equations with Viscosity Terms (1811.03932v2)

Published 9 Nov 2018 in math.NA and cs.NA

Abstract: In this work, we study a new spectral Petrov-Galerkin approximation of space-time fractional reaction-diffusion equations with viscosity terms built by Riemann-Liouville fractional-order derivatives. The proposed method is reliant on generalized Jacobi functions (GJFs) for our problems. The contributions are threefold: First, thanks to the theoretical framework of variational problems, the well-posedness of the problem is proved. Second, new GJF-basis functions are established to fit weak solutions, which take full advantages of the global properties of fractional derivatives. Moreover, the basis functions conclude singular terms, in order to solve our problems with given smooth source term. Finally, we get a numerical analysis of error estimates to depend on GJF-basis functions. Numerical experiments confirm the expected convergence. In addition, they are given to show the effect of the viscosity terms in anomalous diffusion.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.