Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast determinantal point processes via distortion-free intermediate sampling (1811.03717v2)

Published 8 Nov 2018 in cs.LG and stat.ML

Abstract: Given a fixed $n\times d$ matrix $\mathbf{X}$, where $n\gg d$, we study the complexity of sampling from a distribution over all subsets of rows where the probability of a subset is proportional to the squared volume of the parallelepiped spanned by the rows (a.k.a. a determinantal point process). In this task, it is important to minimize the preprocessing cost of the procedure (performed once) as well as the sampling cost (performed repeatedly). To that end, we propose a new determinantal point process algorithm which has the following two properties, both of which are novel: (1) a preprocessing step which runs in time $O(\text{number-of-non-zeros}(\mathbf{X})\cdot\log n)+\text{poly}(d)$, and (2) a sampling step which runs in $\text{poly}(d)$ time, independent of the number of rows $n$. We achieve this by introducing a new regularized determinantal point process (R-DPP), which serves as an intermediate distribution in the sampling procedure by reducing the number of rows from $n$ to $\text{poly}(d)$. Crucially, this intermediate distribution does not distort the probabilities of the target sample. Our key novelty in defining the R-DPP is the use of a Poisson random variable for controlling the probabilities of different subset sizes, leading to new determinantal formulas such as the normalization constant for this distribution. Our algorithm has applications in many diverse areas where determinantal point processes have been used, such as machine learning, stochastic optimization, data summarization and low-rank matrix reconstruction.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)