Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Embracing the Laws of Physics: Three Reversible Models of Computation (1811.03678v2)

Published 8 Nov 2018 in cs.PL, cs.LO, math.CT, and quant-ph

Abstract: Our main models of computation (the Turing Machine and the RAM) make fundamental assumptions about which primitive operations are realizable. The consensus is that these include logical operations like conjunction, disjunction and negation, as well as reading and writing to memory locations. This perspective conforms to a macro-level view of physics and indeed these operations are realizable using macro-level devices involving thousands of electrons. This point of view is however incompatible with quantum mechanics, or even elementary thermodynamics, as both imply that information is a conserved quantity of physical processes, and hence of primitive computational operations. Our aim is to re-develop foundational computational models that embraces the principle of conservation of information. We first define what conservation of information means in a computational setting. We emphasize that computations must be reversible transformations on data. One can think of data as modeled using topological spaces and programs as modeled by reversible deformations. We illustrate this idea using three notions of data. The first assumes unstructured finite data, i.e., discrete topological spaces. The corresponding notion of reversible computation is that of permutations. We then consider a structured notion of data based on the Curry-Howard correspondence; here reversible deformations, as a programming language for witnessing type isomorphisms, comes from proof terms for commutative semirings. We then "move up a level" to treat programs as data. The corresponding notion of reversible programs equivalences comes from the "higher dimensional" analog to commutative semirings: symmetric rig groupoids. The coherence laws for these are exactly the program equivalences we seek. We conclude with some generalizations inspired by homotopy type theory and survey directions for further research.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.