Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Geometric Approach of Gradient Descent Algorithms in Linear Neural Networks (1811.03568v3)

Published 8 Nov 2018 in cs.LG and stat.ML

Abstract: In this paper, we propose a geometric framework to analyze the convergence properties of gradient descent trajectories in the context of linear neural networks. We translate a well-known empirical observation of linear neural nets into a conjecture that we call the \emph{overfitting conjecture} which states that, for almost all training data and initial conditions, the trajectory of the corresponding gradient descent system converges to a global minimum. This would imply that the solution achieved by vanilla gradient descent algorithms is equivalent to that of the least-squares estimation, for linear neural networks of an arbitrary number of hidden layers. Built upon a key invariance property induced by the network structure, we first establish convergence of gradient descent trajectories to critical points of the square loss function in the case of linear networks of arbitrary depth. Our second result is the proof of the \emph{overfitting conjecture} in the case of single-hidden-layer linear networks with an argument based on the notion of normal hyperbolicity and under a generic property on the training data (i.e., holding for almost all training data).

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.