Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degree-$d$ Chow Parameters Robustly Determine Degree-$d$ PTFs (and Algorithmic Applications) (1811.03491v1)

Published 7 Nov 2018 in cs.LG, cs.CC, cs.DS, and stat.ML

Abstract: The degree-$d$ Chow parameters of a Boolean function $f: {-1,1}n \to \mathbb{R}$ are its degree at most $d$ Fourier coefficients. It is well-known that degree-$d$ Chow parameters uniquely characterize degree-$d$ polynomial threshold functions (PTFs) within the space of all bounded functions. In this paper, we prove a robust version of this theorem: For $f$ any Boolean degree-$d$ PTF and $g$ any bounded function, if the degree-$d$ Chow parameters of $f$ are close to the degree-$d$ Chow parameters of $g$ in $\ell_2$-norm, then $f$ is close to $g$ in $\ell_1$-distance. Notably, our bound relating the two distances is completely independent of the dimension $n$. That is, we show that Boolean degree-$d$ PTFs are {\em robustly identifiable} from their degree-$d$ Chow parameters. Results of this form had been shown for the $d=1$ case~\cite{OS11:chow, DeDFS14}, but no non-trivial bound was previously known for $d >1$. Our robust identifiability result gives the following algorithmic applications: First, we show that Boolean degree-$d$ PTFs can be efficiently approximately reconstructed from approximations to their degree-$d$ Chow parameters. This immediately implies that degree-$d$ PTFs are efficiently learnable in the uniform distribution $d$-RFA model~\cite{BenDavidDichterman:98}. As a byproduct of our approach, we also obtain the first low integer-weight approximations of degree-$d$ PTFs, for $d>1$. As our second application, our robust identifiability result gives the first efficient algorithm, with dimension-independent error guarantees, for malicious learning of Boolean degree-$d$ PTFs under the uniform distribution.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ilias Diakonikolas (161 papers)
  2. Daniel M. Kane (129 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.