Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CAAD 2018: Iterative Ensemble Adversarial Attack (1811.03456v1)

Published 7 Nov 2018 in cs.CV, cs.CR, and cs.LG

Abstract: Deep Neural Networks (DNNs) have recently led to significant improvements in many fields. However, DNNs are vulnerable to adversarial examples which are samples with imperceptible perturbations while dramatically misleading the DNNs. Adversarial attacks can be used to evaluate the robustness of deep learning models before they are deployed. Unfortunately, most of existing adversarial attacks can only fool a black-box model with a low success rate. To improve the success rates for black-box adversarial attacks, we proposed an iterated adversarial attack against an ensemble of image classifiers. With this method, we won the 5th place in CAAD 2018 Targeted Adversarial Attack competition.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.