Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Meta-Learning for Multi-objective Reinforcement Learning (1811.03376v2)

Published 8 Nov 2018 in cs.AI

Abstract: Multi-objective reinforcement learning (MORL) is the generalization of standard reinforcement learning (RL) approaches to solve sequential decision making problems that consist of several, possibly conflicting, objectives. Generally, in such formulations, there is no single optimal policy which optimizes all the objectives simultaneously, and instead, a number of policies has to be found each optimizing a preference of the objectives. In other words, the MORL is framed as a meta-learning problem, with the task distribution given by a distribution over the preferences. We demonstrate that such a formulation results in a better approximation of the Pareto optimal solutions in terms of both the optimality and the computational efficiency. We evaluated our method on obtaining Pareto optimal policies using a number of continuous control problems with high degrees of freedom.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.