Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Disentangled Representations for Timber and Pitch in Music Audio (1811.03271v1)

Published 8 Nov 2018 in cs.SD and eess.AS

Abstract: Timbre and pitch are the two main perceptual properties of musical sounds. Depending on the target applications, we sometimes prefer to focus on one of them, while reducing the effect of the other. Researchers have managed to hand-craft such timbre-invariant or pitch-invariant features using domain knowledge and signal processing techniques, but it remains difficult to disentangle them in the resulting feature representations. Drawing upon state-of-the-art techniques in representation learning, we propose in this paper two deep convolutional neural network models for learning disentangled representation of musical timbre and pitch. Both models use encoders/decoders and adversarial training to learn music representations, but the second model additionally uses skip connections to deal with the pitch information. As music is an art of time, the two models are supervised by frame-level instrument and pitch labels using a new dataset collected from MuseScore. We compare the result of the two disentangling models with a new evaluation protocol called "timbre crossover", which leads to interesting applications in audio-domain music editing. Via various objective evaluations, we show that the second model can better change the instrumentation of a multi-instrument music piece without much affecting the pitch structure. By disentangling timbre and pitch, we envision that the model can contribute to generating more realistic music audio as well.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.