Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Model Selection for Generalized Zero-shot Learning (1811.03252v1)

Published 8 Nov 2018 in cs.CV

Abstract: In the problem of generalized zero-shot learning, the datapoints from unknown classes are not available during training. The main challenge for generalized zero-shot learning is the unbalanced data distribution which makes it hard for the classifier to distinguish if a given testing sample comes from a seen or unseen class. However, using Generative Adversarial Network (GAN) to generate auxiliary datapoints by the semantic embeddings of unseen classes alleviates the above problem. Current approaches combine the auxiliary datapoints and original training data to train the generalized zero-shot learning model and obtain state-of-the-art results. Inspired by such models, we propose to feed the generated data via a model selection mechanism. Specifically, we leverage two sources of datapoints (observed and auxiliary) to train some classifier to recognize which test datapoints come from seen and which from unseen classes. This way, generalized zero-shot learning can be divided into two disjoint classification tasks, thus reducing the negative influence of the unbalanced data distribution. Our evaluations on four publicly available datasets for generalized zero-shot learning show that our model obtains state-of-the-art results.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.