Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

An Efficient Algorithm for High-Dimensional Log-Concave Maximum Likelihood (1811.03204v1)

Published 8 Nov 2018 in cs.DS and stat.CO

Abstract: The log-concave maximum likelihood estimator (MLE) problem answers: for a set of points $X_1,...X_n \in \mathbb Rd$, which log-concave density maximizes their likelihood? We present a characterization of the log-concave MLE that leads to an algorithm with runtime $poly(n,d, \frac 1 \epsilon,r)$ to compute a log-concave distribution whose log-likelihood is at most $\epsilon$ less than that of the MLE, and $r$ is parameter of the problem that is bounded by the $\ell_2$ norm of the vector of log-likelihoods the MLE evaluated at $X_1,...,X_n$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.