Papers
Topics
Authors
Recent
2000 character limit reached

An Efficient Algorithm for High-Dimensional Log-Concave Maximum Likelihood (1811.03204v1)

Published 8 Nov 2018 in cs.DS and stat.CO

Abstract: The log-concave maximum likelihood estimator (MLE) problem answers: for a set of points $X_1,...X_n \in \mathbb Rd$, which log-concave density maximizes their likelihood? We present a characterization of the log-concave MLE that leads to an algorithm with runtime $poly(n,d, \frac 1 \epsilon,r)$ to compute a log-concave distribution whose log-likelihood is at most $\epsilon$ less than that of the MLE, and $r$ is parameter of the problem that is bounded by the $\ell_2$ norm of the vector of log-likelihoods the MLE evaluated at $X_1,...,X_n$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.