Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Towards Fluent Translations from Disfluent Speech (1811.03189v1)

Published 7 Nov 2018 in cs.CL

Abstract: When translating from speech, special consideration for conversational speech phenomena such as disfluencies is necessary. Most machine translation training data consists of well-formed written texts, causing issues when translating spontaneous speech. Previous work has introduced an intermediate step between speech recognition (ASR) and machine translation (MT) to remove disfluencies, making the data better-matched to typical translation text and significantly improving performance. However, with the rise of end-to-end speech translation systems, this intermediate step must be incorporated into the sequence-to-sequence architecture. Further, though translated speech datasets exist, they are typically news or rehearsed speech without many disfluencies (e.g. TED), or the disfluencies are translated into the references (e.g. Fisher). To generate clean translations from disfluent speech, cleaned references are necessary for evaluation. We introduce a corpus of cleaned target data for the Fisher Spanish-English dataset for this task. We compare how different architectures handle disfluencies and provide a baseline for removing disfluencies in end-to-end translation.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.