Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DOD-CNN: Doubly-injecting Object Information for Event Recognition (1811.02910v2)

Published 7 Nov 2018 in cs.CV

Abstract: Recognizing an event in an image can be enhanced by detecting relevant objects in two ways: 1) indirectly utilizing object detection information within the unified architecture or 2) directly making use of the object detection output results. We introduce a novel approach, referred to as Doubly-injected Object Detection CNN (DOD-CNN), exploiting the object information in both ways for the task of event recognition. The structure of this network is inspired by the Integrated Object Detection CNN (IOD-CNN) where object information is indirectly exploited by the event recognition module through the shared portion of the network. In the DOD-CNN architecture, the intermediate object detection outputs are directly injected into the event recognition network while keeping the indirect sharing structure inherited from the IOD-CNN, thus being `doubly-injected'. We also introduce a batch pooling layer which constructs one representative feature map from multiple object hypotheses. We have demonstrated the effectiveness of injecting the object detection information in two different ways in the task of malicious event recognition.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.