Papers
Topics
Authors
Recent
2000 character limit reached

Wasserstein variational gradient descent: From semi-discrete optimal transport to ensemble variational inference

Published 7 Nov 2018 in stat.ML and cs.LG | (1811.02827v2)

Abstract: Particle-based variational inference offers a flexible way of approximating complex posterior distributions with a set of particles. In this paper we introduce a new particle-based variational inference method based on the theory of semi-discrete optimal transport. Instead of minimizing the KL divergence between the posterior and the variational approximation, we minimize a semi-discrete optimal transport divergence. The solution of the resulting optimal transport problem provides both a particle approximation and a set of optimal transportation densities that map each particle to a segment of the posterior distribution. We approximate these transportation densities by minimizing the KL divergence between a truncated distribution and the optimal transport solution. The resulting algorithm can be interpreted as a form of ensemble variational inference where each particle is associated with a local variational approximation.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.