Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On exponential convergence of SGD in non-convex over-parametrized learning (1811.02564v1)

Published 6 Nov 2018 in math.OC, cs.LG, and stat.ML

Abstract: Large over-parametrized models learned via stochastic gradient descent (SGD) methods have become a key element in modern machine learning. Although SGD methods are very effective in practice, most theoretical analyses of SGD suggest slower convergence than what is empirically observed. In our recent work [8] we analyzed how interpolation, common in modern over-parametrized learning, results in exponential convergence of SGD with constant step size for convex loss functions. In this note, we extend those results to a much broader non-convex function class satisfying the Polyak-Lojasiewicz (PL) condition. A number of important non-convex problems in machine learning, including some classes of neural networks, have been recently shown to satisfy the PL condition. We argue that the PL condition provides a relevant and attractive setting for many machine learning problems, particularly in the over-parametrized regime.

Citations (96)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.