Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On exponential convergence of SGD in non-convex over-parametrized learning (1811.02564v1)

Published 6 Nov 2018 in math.OC, cs.LG, and stat.ML

Abstract: Large over-parametrized models learned via stochastic gradient descent (SGD) methods have become a key element in modern machine learning. Although SGD methods are very effective in practice, most theoretical analyses of SGD suggest slower convergence than what is empirically observed. In our recent work [8] we analyzed how interpolation, common in modern over-parametrized learning, results in exponential convergence of SGD with constant step size for convex loss functions. In this note, we extend those results to a much broader non-convex function class satisfying the Polyak-Lojasiewicz (PL) condition. A number of important non-convex problems in machine learning, including some classes of neural networks, have been recently shown to satisfy the PL condition. We argue that the PL condition provides a relevant and attractive setting for many machine learning problems, particularly in the over-parametrized regime.

Citations (96)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube