Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Convolutional LSTMs for Cloud-Robust Segmentation of Remote Sensing Imagery (1811.02471v2)

Published 28 Oct 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Clouds frequently cover the Earth's surface and pose an omnipresent challenge to optical Earth observation methods. The vast majority of remote sensing approaches either selectively choose single cloud-free observations or employ a pre-classification strategy to identify and mask cloudy pixels. We follow a different strategy and treat cloud coverage as noise that is inherent to the observed satellite data. In prior work, we directly employed a straightforward \emph{convolutional long short-term memory} network for vegetation classification without explicit cloud filtering and achieved state-of-the-art classification accuracies. In this work, we investigate this cloud-robustness further by visualizing internal cell activations and performing an ablation experiment on datasets of different cloud coverage. In the visualizations of network states, we identified some cells in which modulation and input gates closed on cloudy pixels. This indicates that the network has internalized a cloud-filtering mechanism without being specifically trained on cloud labels. Overall, our results question the necessity of sophisticated pre-processing pipelines for multi-temporal deep learning approaches.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.