Effective Subword Segmentation for Text Comprehension (1811.02364v2)
Abstract: Representation learning is the foundation of machine reading comprehension and inference. In state-of-the-art models, character-level representations have been broadly adopted to alleviate the problem of effectively representing rare or complex words. However, character itself is not a natural minimal linguistic unit for representation or word embedding composing due to ignoring the linguistic coherence of consecutive characters inside word. This paper presents a general subword-augmented embedding framework for learning and composing computationally-derived subword-level representations. We survey a series of unsupervised segmentation methods for subword acquisition and different subword-augmented strategies for text understanding, showing that subword-augmented embedding significantly improves our baselines in various types of text understanding tasks on both English and Chinese benchmarks.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.