Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Speaker verification using end-to-end adversarial language adaptation (1811.02331v1)

Published 6 Nov 2018 in eess.AS and cs.SD

Abstract: In this paper we investigate the use of adversarial domain adaptation for addressing the problem of language mismatch between speaker recognition corpora. In the context of speaker verification, adversarial domain adaptation methods aim at minimizing certain divergences between the distribution that the utterance-level features follow (i.e. speaker embeddings) when drawn from source and target domains (i.e. languages), while preserving their capacity in recognizing speakers. Neural architectures for extracting utterance-level representations enable us to apply adversarial adaptation methods in an end-to-end fashion and train the network jointly with the standard cross-entropy loss. We examine several configurations, such as the use of (pseudo-)labels on the target domain as well as domain labels in the feature extractor, and we demonstrate the effectiveness of our method on the challenging NIST SRE16 and SRE18 benchmarks.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.