Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SparseFool: a few pixels make a big difference (1811.02248v4)

Published 6 Nov 2018 in cs.CV, cs.CR, and cs.LG

Abstract: Deep Neural Networks have achieved extraordinary results on image classification tasks, but have been shown to be vulnerable to attacks with carefully crafted perturbations of the input data. Although most attacks usually change values of many image's pixels, it has been shown that deep networks are also vulnerable to sparse alterations of the input. However, no computationally efficient method has been proposed to compute sparse perturbations. In this paper, we exploit the low mean curvature of the decision boundary, and propose SparseFool, a geometry inspired sparse attack that controls the sparsity of the perturbations. Extensive evaluations show that our approach computes sparse perturbations very fast, and scales efficiently to high dimensional data. We further analyze the transferability and the visual effects of the perturbations, and show the existence of shared semantic information across the images and the networks. Finally, we show that adversarial training can only slightly improve the robustness against sparse additive perturbations computed with SparseFool.

Citations (186)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.