Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

BLP -- Boundary Likelihood Pinpointing Networks for Accurate Temporal Action Localization (1811.02189v6)

Published 6 Nov 2018 in cs.CV

Abstract: Despite tremendous progress achieved in temporal action detection, state-of-the-art methods still suffer from the sharp performance deterioration when localizing the starting and ending temporal action boundaries. Although most methods apply boundary regression paradigm to tackle this problem, we argue that the direct regression lacks detailed enough information to yield accurate temporal boundaries. In this paper, we propose a novel Boundary Likelihood Pinpointing (BLP) network to alleviate this deficiency of boundary regression and improve the localization accuracy. Given a loosely localized search interval that contains an action instance, BLP casts the problem of localizing temporal boundaries as that of assigning probabilities on each equally divided unit of this interval. These generated probabilities provide useful information regarding the boundary location of the action inside this search interval. Based on these probabilities, we introduce a boundary pinpointing paradigm to pinpoint the accurate boundaries under a simple probabilistic framework. Compared with other C3D feature based detectors, extensive experiments demonstrate that BLP significantly improves the localization performance of recent state-of-the-art detectors, and achieves competitive detection mAP on both THUMOS' 14 and ActivityNet datasets, particularly when the evaluation tIoU is high.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.