Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Erasure coding for distributed matrix multiplication for matrices with bounded entries (1811.02144v2)

Published 6 Nov 2018 in cs.DC, cs.IT, cs.LG, and math.IT

Abstract: Distributed matrix multiplication is widely used in several scientific domains. It is well recognized that computation times on distributed clusters are often dominated by the slowest workers (called stragglers). Recent work has demonstrated that straggler mitigation can be viewed as a problem of designing erasure codes. For matrices $\mathbf A$ and $\mathbf B$, the technique essentially maps the computation of $\mathbf AT \mathbf B$ into the multiplication of smaller (coded) submatrices. The stragglers are treated as erasures in this process. The computation can be completed as long as a certain number of workers (called the recovery threshold) complete their assigned tasks. We present a novel coding strategy for this problem when the absolute values of the matrix entries are sufficiently small. We demonstrate a tradeoff between the assumed absolute value bounds on the matrix entries and the recovery threshold. At one extreme, we are optimal with respect to the recovery threshold and on the other extreme, we match the threshold of prior work. Experimental results on cloud-based clusters validate the benefits of our method.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.