Papers
Topics
Authors
Recent
2000 character limit reached

Improving Span-based Question Answering Systems with Coarsely Labeled Data (1811.02076v1)

Published 5 Nov 2018 in cs.CL

Abstract: We study approaches to improve fine-grained short answer Question Answering models by integrating coarse-grained data annotated for paragraph-level relevance and show that coarsely annotated data can bring significant performance gains. Experiments demonstrate that the standard multi-task learning approach of sharing representations is not the most effective way to leverage coarse-grained annotations. Instead, we can explicitly model the latent fine-grained short answer variables and optimize the marginal log-likelihood directly or use a newly proposed \emph{posterior distillation} learning objective. Since these latent-variable methods have explicit access to the relationship between the fine and coarse tasks, they result in significantly larger improvements from coarse supervision.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.