Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Sparsest Additive Spanner via Multiple Weighted BFS Trees (1811.01997v2)

Published 5 Nov 2018 in cs.DC and cs.DS

Abstract: Spanners are fundamental graph structures that sparsify graphs at the cost of small stretch. In particular, in recent years, many sequential algorithms constructing additive all-pairs spanners were designed, providing very sparse small-stretch subgraphs. Remarkably, it was then shown that the known (+6)-spanner constructions are essentially the sparsest possible, that is, a larger additive stretch cannot guarantee a sparser spanner, which brought the stretch-sparsity trade-off to its limit. Distributed constructions of spanners are also abundant. However, for additive spanners, while there were algorithms constructing (+2) and (+4)-all-pairs spanners, the sparsest case of (+6)-spanners remained elusive. We remedy this by designing a new sequential algorithm for constructing a (+6)-spanner with the essentially-optimal sparsity of roughly O(n{4/3}) edges. We then show a distributed implementation of our algorithm, answering an open problem in [Censor-Hillel et al., DISC 2016]. A main ingredient in our distributed algorithm is an efficient construction of multiple weighted BFS trees. A weighted BFS tree is a BFS tree in a weighted graph, that consists of the lightest among all shortest paths from the root to each node. We present a distributed algorithm in the CONGEST model, that constructs multiple weighted BFS trees in |S|+D-1 rounds, where S is the set of sources and D is the diameter of the network graph.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube