Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Do RNNs learn human-like abstract word order preferences? (1811.01866v1)

Published 5 Nov 2018 in cs.CL

Abstract: RNN LLMs have achieved state-of-the-art results on various tasks, but what exactly they are representing about syntax is as yet unclear. Here we investigate whether RNN LLMs learn humanlike word order preferences in syntactic alternations. We collect LLM surprisal scores for controlled sentence stimuli exhibiting major syntactic alternations in English: heavy NP shift, particle shift, the dative alternation, and the genitive alternation. We show that RNN LLMs reproduce human preferences in these alternations based on NP length, animacy, and definiteness. We collect human acceptability ratings for our stimuli, in the first acceptability judgment experiment directly manipulating the predictors of syntactic alternations. We show that the RNNs' performance is similar to the human acceptability ratings and is not matched by an n-gram baseline model. Our results show that RNNs learn the abstract features of weight, animacy, and definiteness which underlie soft constraints on syntactic alternations.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.