Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Genetic Network (1811.01845v2)

Published 5 Nov 2018 in cs.LG, cs.NE, and stat.ML

Abstract: Optimizing a neural network's performance is a tedious and time taking process, this iterative process does not have any defined solution which can work for all the problems. Optimization can be roughly categorized into - Architecture and Hyperparameter optimization. Many algorithms have been devised to address this problem. In this paper we introduce a neural network architecture (Deep Genetic Network) which will optimize its parameters during training based on its fitness. Deep Genetic Net uses genetic algorithms along with deep neural networks to address the hyperparameter optimization problem, this approach uses ideas like mating and mutation which are key to genetic algorithms which help the neural net architecture to learn to optimize its hyperparameters by itself rather than depending on a person to explicitly set the values. Using genetic algorithms for this problem proved to work exceptionally well when given enough time to train the network. The proposed architecture is found to work well in optimizing hyperparameters in affine, convolutional and recurrent layers proving to be a good choice for conventional supervised learning tasks.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.