Papers
Topics
Authors
Recent
Search
2000 character limit reached

Kernel Conjugate Gradient Methods with Random Projections

Published 5 Nov 2018 in stat.ML, cs.LG, math.FA, math.OC, math.ST, and stat.TH | (1811.01760v2)

Abstract: We propose and study kernel conjugate gradient methods (KCGM) with random projections for least-squares regression over a separable Hilbert space. Considering two types of random projections generated by randomized sketches and Nystr\"{o}m subsampling, we prove optimal statistical results with respect to variants of norms for the algorithms under a suitable stopping rule. Particularly, our results show that if the projection dimension is proportional to the effective dimension of the problem, KCGM with randomized sketches can generalize optimally, while achieving a computational advantage. As a corollary, we derive optimal rates for classic KCGM in the well-conditioned regimes for the case that the target function may not be in the hypothesis space.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.