Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FUNN: Flexible Unsupervised Neural Network (1811.01749v1)

Published 5 Nov 2018 in cs.LG and cs.CV

Abstract: Deep neural networks have demonstrated high accuracy in image classification tasks. However, they were shown to be weak against adversarial examples: a small perturbation in the image which changes the classification output dramatically. In recent years, several defenses have been proposed to solve this issue in supervised classification tasks. We propose a method to obtain robust features in unsupervised learning tasks against adversarial attacks. Our method differs from existing solutions by directly learning the robust features without the need to project the adversarial examples in the original examples distribution space. A first auto-encoder A1 is in charge of perturbing the input image to fool another auto-encoder A2 which is in charge of regenerating the original image. A1 tries to find the less perturbed image under the constraint that the error in the output of A2 should be at least equal to a threshold. Thanks to this training, the encoder of A2 will be robust against adversarial attacks and could be used in different tasks like classification. Using state-of-art network architectures, we demonstrate the robustness of the features obtained thanks to this method in classification tasks.

Summary

We haven't generated a summary for this paper yet.