Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Biased landscapes for random Constraint Satisfaction Problems (1811.01680v2)

Published 5 Nov 2018 in cond-mat.dis-nn, cs.DM, and math.PR

Abstract: The typical complexity of Constraint Satisfaction Problems (CSPs) can be investigated by means of random ensembles of instances. The latter exhibit many threshold phenomena besides their satisfiability phase transition, in particular a clustering or dynamic phase transition (related to the tree reconstruction problem) at which their typical solutions shatter into disconnected components. In this paper we study the evolution of this phenomenon under a bias that breaks the uniformity among solutions of one CSP instance, concentrating on the bicoloring of k-uniform random hypergraphs. We show that for small k the clustering transition can be delayed in this way to higher density of constraints, and that this strategy has a positive impact on the performances of Simulated Annealing algorithms. We characterize the modest gain that can be expected in the large k limit from the simple implementation of the biasing idea studied here. This paper contains also a contribution of a more methodological nature, made of a review and extension of the methods to determine numerically the discontinuous dynamic transition threshold.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Louise Budzynski (9 papers)
  2. Federico Ricci-Tersenghi (100 papers)
  3. Guilhem Semerjian (31 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.