Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Semi-Semantic Line-Cluster Assisted Monocular SLAM for Indoor Environments (1811.01592v1)

Published 5 Nov 2018 in cs.CV and cs.RO

Abstract: This paper presents a novel method to reduce the scale drift for indoor monocular simultaneous localization and mapping (SLAM). We leverage the prior knowledge that in the indoor environment, the line segments form tight clusters, e.g. many door frames in a straight corridor are of the same shape, size and orientation, so the same edges of these door frames form a tight line segment cluster. We implement our method in the popular ORB-SLAM2, which also serves as our baseline. In the front end we detect the line segments in each frame and incrementally cluster them in the 3D space. In the back end, we optimize the map imposing the constraint that the line segments of the same cluster should be the same. Experimental results show that our proposed method successfully reduces the scale drift for indoor monocular SLAM.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.