Papers
Topics
Authors
Recent
2000 character limit reached

Supervised Linear Regression for Graph Learning from Graph Signals (1811.01586v1)

Published 5 Nov 2018 in cs.IT and math.IT

Abstract: We propose a supervised learning approach for predicting an underlying graph from a set of graph signals. Our approach is based on linear regression. In the linear regression model, we predict edge-weights of a graph as the output, given a set of signal values on nodes of the graph as the input. We solve for the optimal regression coefficients using a relevant optimization problem that is convex and uses a graph-Laplacian based regularization. The regularization helps to promote a specific graph spectral profile of the graph signals. Simulation experiments demonstrate that our approach predicts well even in presence of outliers in input data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.