Emergent Mind

Abstract

Fooling deep neural networks with adversarial input have exposed a significant vulnerability in the current state-of-the-art systems in multiple domains. Both black-box and white-box approaches have been used to either replicate the model itself or to craft examples which cause the model to fail. In this work, we propose a framework which uses multi-objective evolutionary optimization to perform both targeted and un-targeted black-box attacks on Automatic Speech Recognition (ASR) systems. We apply this framework on two ASR systems: Deepspeech and Kaldi-ASR, which increases the Word Error Rates (WER) of these systems by upto 980%, indicating the potency of our approach. During both un-targeted and targeted attacks, the adversarial samples maintain a high acoustic similarity of 0.98 and 0.97 with the original audio.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.