Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reliable graph-based collaborative ranking (1811.01211v1)

Published 3 Nov 2018 in cs.SI

Abstract: GRank is a recent graph-based recommendation approach the uses a novel heterogeneous information network to model users' priorities and analyze it to directly infer a recommendation list. Unfortunately, GRank neglects the semantics behind different types of paths in the network and during the process, it may use unreliable paths that are inconsistent with the general idea of similarity in neighborhood collaborative ranking. That negligence undermines the reliability of the recommendation list generated by GRank. This paper seeks to present a novel framework for reliable graph-based collaborative ranking, called ReGRank, that ranks items based on reliable recommendation paths that are in harmony with the semantics behind different approaches in neighborhood collaborative ranking. To our knowledge, ReGRank is the first unified framework for neighborhood collaborative ranking that in addition to traditional user-based collaborative ranking, can also be adapted for preference-based and representative-based collaborative ranking as well. Experimental results show that ReGRank significantly improves the state-of-the art neighborhood and graph-based collaborative ranking algorithms.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube