Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

What evidence does deep learning model use to classify Skin Lesions? (1811.01051v3)

Published 2 Nov 2018 in cs.CV and q-bio.QM

Abstract: Melanoma is a type of skin cancer with the most rapidly increasing incidence. Early detection of melanoma using dermoscopy images significantly increases patients' survival rate. However, accurately classifying skin lesions by eye, especially in the early stage of melanoma, is extremely challenging for the dermatologists. Hence, the discovery of reliable biomarkers will be meaningful for melanoma diagnosis. Recent years, the value of deep learning empowered computer-assisted diagnose has been shown in biomedical imaging based decision making. However, much research focuses on improving disease detection accuracy but not exploring the evidence of pathology. In this paper, we propose a method to interpret the deep learning classification findings. Firstly, we propose an accurate neural network architecture to classify skin lesions. Secondly, we utilize a prediction difference analysis method that examines each patch on the image through patch-wised corrupting to detect the biomarkers. Lastly, we validate that our biomarker findings are corresponding to the patterns in the literature. The findings can be significant and useful to guide clinical diagnosis.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.