Papers
Topics
Authors
Recent
2000 character limit reached

Clustering and Learning from Imbalanced Data (1811.00972v2)

Published 2 Nov 2018 in cs.LG and stat.ML

Abstract: A learning classifier must outperform a trivial solution, in case of imbalanced data, this condition usually does not hold true. To overcome this problem, we propose a novel data level resampling method - Clustering Based Oversampling for improved learning from class imbalanced datasets. The essential idea behind the proposed method is to use the distance between a minority class sample and its respective cluster centroid to infer the number of new sample points to be generated for that minority class sample. The proposed algorithm has very less dependence on the technique used for finding cluster centroids and does not effect the majority class learning in any way. It also improves learning from imbalanced data by incorporating the distribution structure of minority class samples in generation of new data samples. The newly generated minority class data is handled in a way as to prevent outlier production and overfitting. Implementation analysis on different datasets using deep neural networks as the learning classifier shows the effectiveness of this method as compared to other synthetic data resampling techniques across several evaluation metrics.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube