Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Implicit Regularization of Stochastic Gradient Descent in Natural Language Processing: Observations and Implications (1811.00659v1)

Published 1 Nov 2018 in cs.CL, cs.LG, and cs.NE

Abstract: Deep neural networks with remarkably strong generalization performances are usually over-parameterized. Despite explicit regularization strategies are used for practitioners to avoid over-fitting, the impacts are often small. Some theoretical studies have analyzed the implicit regularization effect of stochastic gradient descent (SGD) on simple machine learning models with certain assumptions. However, how it behaves practically in state-of-the-art models and real-world datasets is still unknown. To bridge this gap, we study the role of SGD implicit regularization in deep learning systems. We show pure SGD tends to converge to minimas that have better generalization performances in multiple NLP tasks. This phenomenon coexists with dropout, an explicit regularizer. In addition, neural network's finite learning capability does not impact the intrinsic nature of SGD's implicit regularization effect. Specifically, under limited training samples or with certain corrupted labels, the implicit regularization effect remains strong. We further analyze the stability by varying the weight initialization range. We corroborate these experimental findings with a decision boundary visualization using a 3-layer neural network for interpretation. Altogether, our work enables a deepened understanding on how implicit regularization affects the deep learning model and sheds light on the future study of the over-parameterized model's generalization ability.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube