Papers
Topics
Authors
Recent
2000 character limit reached

Variational Dropout via Empirical Bayes (1811.00596v2)

Published 1 Nov 2018 in stat.ML and cs.LG

Abstract: We study the Automatic Relevance Determination procedure applied to deep neural networks. We show that ARD applied to Bayesian DNNs with Gaussian approximate posterior distributions leads to a variational bound similar to that of variational dropout, and in the case of a fixed dropout rate, objectives are exactly the same. Experimental results show that the two approaches yield comparable results in practice even when the dropout rates are trained. This leads to an alternative Bayesian interpretation of dropout and mitigates some of the theoretical issues that arise with the use of improper priors in the variational dropout model. Additionally, we explore the use of the hierarchical priors in ARD and show that it helps achieve higher sparsity for the same accuracy.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.