Papers
Topics
Authors
Recent
2000 character limit reached

Addressing word-order Divergence in Multilingual Neural Machine Translation for extremely Low Resource Languages

Published 1 Nov 2018 in cs.CL | (1811.00383v2)

Abstract: Transfer learning approaches for Neural Machine Translation (NMT) train a NMT model on the assisting-target language pair (parent model) which is later fine-tuned for the source-target language pair of interest (child model), with the target language being the same. In many cases, the assisting language has a different word order from the source language. We show that divergent word order adversely limits the benefits from transfer learning when little to no parallel corpus between the source and target language is available. To bridge this divergence, We propose to pre-order the assisting language sentence to match the word order of the source language and train the parent model. Our experiments on many language pairs show that bridging the word order gap leads to significant improvement in the translation quality.

Citations (42)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.