Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sharp moment-entropy inequalities and capacity bounds for log-concave distributions (1811.00345v4)

Published 1 Nov 2018 in cs.IT, math.IT, and math.PR

Abstract: We show that the uniform distribution minimizes entropy among all one-dimensional symmetric log-concave distributions with fixed variance, as well as various generalizations of this fact to R\'enyi entropies of orders less than 1 and with moment constraints involving $p$-th absolute moments with $p\leq 2$. As consequences, we give new capacity bounds for additive noise channels with symmetric log-concave noises, as well as for timing channels involving positive signal and noise where the noise has a decreasing log-concave density. In particular, we show that the capacity of an additive noise channel with symmetric, log-concave noise under an average power constraint is at most 0.254 bits per channel use greater than the capacity of an additive Gaussian noise channel with the same noise power. Consequences for reverse entropy power inequalities and connections to the slicing problem in convex geometry are also discussed.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.