Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Sharp moment-entropy inequalities and capacity bounds for log-concave distributions (1811.00345v4)

Published 1 Nov 2018 in cs.IT, math.IT, and math.PR

Abstract: We show that the uniform distribution minimizes entropy among all one-dimensional symmetric log-concave distributions with fixed variance, as well as various generalizations of this fact to R\'enyi entropies of orders less than 1 and with moment constraints involving $p$-th absolute moments with $p\leq 2$. As consequences, we give new capacity bounds for additive noise channels with symmetric log-concave noises, as well as for timing channels involving positive signal and noise where the noise has a decreasing log-concave density. In particular, we show that the capacity of an additive noise channel with symmetric, log-concave noise under an average power constraint is at most 0.254 bits per channel use greater than the capacity of an additive Gaussian noise channel with the same noise power. Consequences for reverse entropy power inequalities and connections to the slicing problem in convex geometry are also discussed.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.