Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network (1811.00344v2)

Published 1 Nov 2018 in cs.CV

Abstract: Convolutional neural network (CNN) based methods have recently achieved great success for image super-resolution (SR). However, most deep CNN based SR models attempt to improve distortion measures (e.g. PSNR, SSIM, IFC, VIF) while resulting in poor quantified perceptual quality (e.g. human opinion score, no-reference quality measures such as NIQE). Few works have attempted to improve the perceptual quality at the cost of performance reduction in distortion measures. A very recent study has revealed that distortion and perceptual quality are at odds with each other and there is always a trade-off between the two. Often the restoration algorithms that are superior in terms of perceptual quality, are inferior in terms of distortion measures. Our work attempts to analyze the trade-off between distortion and perceptual quality for the problem of single image SR. To this end, we use the well-known SR architecture-enhanced deep super-resolution (EDSR) network and show that it can be adapted to achieve better perceptual quality for a specific range of the distortion measure. While the original network of EDSR was trained to minimize the error defined based on per-pixel accuracy alone, we train our network using a generative adversarial network framework with EDSR as the generator module. Our proposed network, called enhanced perceptual super-resolution network (EPSR), is trained with a combination of mean squared error loss, perceptual loss, and adversarial loss. Our experiments reveal that EPSR achieves the state-of-the-art trade-off between distortion and perceptual quality while the existing methods perform well in either of these measures alone.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube