Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Weakly supervised CRNN system for sound event detection with large-scale unlabeled in-domain data (1811.00301v1)

Published 1 Nov 2018 in cs.SD and eess.AS

Abstract: Sound event detection (SED) is typically posed as a supervised learning problem requiring training data with strong temporal labels of sound events. However, the production of datasets with strong labels normally requires unaffordable labor cost. It limits the practical application of supervised SED methods. The recent advances in SED approaches focuses on detecting sound events by taking advantages of weakly labeled or unlabeled training data. In this paper, we propose a joint framework to solve the SED task using large-scale unlabeled in-domain data. In particular, a state-of-the-art general audio tagging model is first employed to predict weak labels for unlabeled data. On the other hand, a weakly supervised architecture based on the convolutional recurrent neural network (CRNN) is developed to solve the strong annotations of sound events with the aid of the unlabeled data with predicted labels. It is found that the SED performance generally increases as more unlabeled data is added into the training. To address the noisy label problem of unlabeled data, an ensemble strategy is applied to increase the system robustness. The proposed system is evaluated on the SED dataset of DCASE 2018 challenge. It reaches a F1-score of 21.0%, resulting in an improvement of 10% over the baseline system.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.